79 research outputs found

    Quality control of the sheep bacterial artificial chromosome library, CHORI-243

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sheep CHORI-243 bacterial artificial chromosome (BAC) library is being used in the construction of the virtual sheep genome, the sequencing and construction of the actual sheep genome assembly and as a source of DNA for regions of the genome of biological interest. The objective of our study is to assess the integrity of the clones and plates which make up the CHORI-243 library using the virtual sheep genome.</p> <p>Findings</p> <p>A series of analyses were undertaken based on the mapping the sheep BAC-end sequences (BESs) to the virtual sheep genome. Overall, very few plate specific biases were identified, with only three of the 528 plates in the library significantly affected. The analysis of the number of tail-to-tail (concordant) BACs on the plates identified a number of plates with lower than average numbers of such BACs. For plates 198 and 213 a partial swap of the BESs determined with one of the two primers appear to have occurred. A third plate, 341, also with a significant deficit in tail-to-tail BACs, appeared to contain a substantial number of sequences determined from contaminating eubacterial 16 S rRNA DNA. Additionally a small number of eubacterial 16 S rRNA DNA sequences were present on two other plates, 111 and 338, in the library.</p> <p>Conclusions</p> <p>The comparative genomic approach can be used to assess BAC library integrity in the absence of fingerprinting. The sequences of the sheep CHORI-243 library BACs have high integrity, especially with the corrections detailed above. The library represents a high quality resource for use by the sheep genomics community.</p

    Cloning of the Canine \u3cem\u3eABCA4\u3c/em\u3e Gene and Evaluation in Canine Cone-Rod Dystrophies and Progressive Retinal Atrophies

    Get PDF
    PURPOSE: To characterize a novel early onset canine retinal disease, and evaluate the ATP-binding cassette transporter gene ABCA4 as a potential candidate gene in this and other canine retinal degenerations. METHODS: Retinal disease was characterized ophthalmoscopically and electroretinographically in two pit bull terrier dogs and their purpose-bred descendants. All 50 exons of the canine ABCA4 gene were amplified, cloned and sequenced from retinal mRNA of a normal, a carrier and an affected animal, and polymorphisms identified. The latter were used to search for association between ABCA4 and retinal disease both within the study pedigrees and in additional canine breeds segregating retinal degenerations. RESULTS: The disease derived from either founder is distinguished by early, severe, and rapidly progressive loss of cone function accompanied by progressive rod loss that is only relatively slower. Cloning and comparative sequencing of ABCA4 identified six point mutations, none of which were obviously pathogenic. Crossbreeding studies revealed that the diseases in the two founders, although similar, are nonallelic. Pedigree analysis of segregating polymorphisms revealed dissociation between ABCA4 and both retinal phenotypes. CONCLUSIONS: The early, severe cone dysfunction in these diseases distinguish them from other forms of canine Progressive Retinal Atrophy. The development of a research population segregating these diseases presents two large animal models for the heterogenous human diseases termed cone-rod dystrophies. Analysis of the canine ABCA4 homolog gene documented its sequence and identified a set of point mutations that were used to exclude this gene as causal to these canine cone-rod dystrophies

    Canine Population Structure: Assessment and Impact of Intra-Breed Stratification on SNP-Based Association Studies

    Get PDF
    In canine genetics, the impact of population structure on whole genome association studies is typically addressed by sampling approximately equal numbers of cases and controls from dogs of a single breed, usually from the same country or geographic area. However one way to increase the power of genetic studies is to sample individuals of the same breed but from different geographic areas, with the expectation that independent meiotic events will have shortened the presumed ancestral haplotype around the mutation differently. Little is known, however, about genetic variation among dogs of the same breed collected from different geographic regions.In this report, we address the magnitude and impact of genetic diversity among common breeds sampled in the U.S. and Europe. The breeds selected, including the Rottweiler, Bernese mountain dog, flat-coated retriever, and golden retriever, share susceptibility to a class of soft tissue cancers typified by malignant histiocytosis in the Bernese mountain dog. We genotyped 722 SNPs at four unlinked loci (between 95 and 271 per locus) on canine chromosome 1 (CFA1). We showed that each population is characterized by distinct genetic diversity that can be correlated with breed history. When the breed studied has a reduced intra-breed diversity, the combination of dogs from international locations does not increase the rate of false positives and potentially increases the power of association studies. However, over-sampling cases from one geographic location is more likely to lead to false positive results in breeds with significant genetic diversity.These data provide new guidelines for association studies using purebred dogs that take into account population structure

    An integrated 4249 marker FISH/RH map of the canine genome

    Get PDF
    BACKGROUND: The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology. RESULTS: To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH) map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs) localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH). The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS) between the dog and human genomes, dramatically extending the length of most previously described CS. CONCLUSIONS: These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps

    Breed Relationships Facilitate Fine-Mapping Studies: A 7.8-kb Deletion Cosegregates With Collie Eye Anomaly Across Multiple Dog Breeds

    Get PDF
    The features of modern dog breeds that increase the ease of mapping common diseases, such as reduced heterogeneity and extensive linkage disequilibrium, may also increase the difficulty associated with fine mapping and identifying causative mutations. One way to address this problem is by combining data from multiple breeds segregating the same trait after initial linkage has been determined. The multibreed approach increases the number of potentially informative recombination events and reduces the size of the critical haplotype by taking advantage of shortened linkage disequilibrium distances found across breeds. In order to identify breeds that likely share a trait inherited from the same ancestral source, we have used cluster analysis to divide 132 breeds of dog into five primary breed groups. We then use the multibreed approach to fine-map Collie eye anomaly (cea), a complex disorder of ocular development that was initially mapped to a 3.9-cM region on canine chromosome 37. Combined genotypes from affected individuals from four breeds of a single breed group significantly narrowed the candidate gene region to a 103-kb interval spanning only four genes. Sequence analysis revealed that all affected dogs share a homozygous deletion of 7.8 kb in the NHEJ1 gene. This intronic deletion spans a highly conserved binding domain to which several developmentally important proteins bind. This work both establishes that the primary cea mutation arose as a single disease allele in a common ancestor of herding breeds as well as highlights the value of comparative population analysis for refining regions of linkage

    Systematic detection of putative tumor suppressor genes through the combined use of exome and transcriptome sequencing

    Get PDF
    Abstract Background To identify potential tumor suppressor genes, genome-wide data from exome and transcriptome sequencing were combined to search for genes with loss of heterozygosity and allele-specific expression. The analysis was conducted on the breast cancer cell line HCC1954, and a lymphoblast cell line from the same individual, HCC1954BL. Results By comparing exome sequences from the two cell lines, we identified loss of heterozygosity events at 403 genes in HCC1954 and at one gene in HCC1954BL. The combination of exome and transcriptome sequence data also revealed 86 and 50 genes with allele specific expression events in HCC1954 and HCC1954BL, which comprise 5.4% and 2.6% of genes surveyed, respectively. Many of these genes identified by loss of heterozygosity and allele-specific expression are known or putative tumor suppressor genes, such as BRCA1, MSH3 and SETX, which participate in DNA repair pathways. Conclusions Our results demonstrate that the combined application of high throughput sequencing to exome and allele-specific transcriptome analysis can reveal genes with known tumor suppressor characteristics, and a shortlist of novel candidates for the study of tumor suppressor activities

    Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    Get PDF
    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria
    • …
    corecore